
Technology

BeatProfiler: Multimodal In Vitro Analysis of
Cardiac Function Enables Machine Learning

Classification of Diseases and Drugs
Youngbin Kim , Member, IEEE, Kunlun Wang , Roberta I. Lock, Trevor R. Nash , Sharon Fleischer ,

Bryan Z. Wang , Barry M. Fine , and Gordana Vunjak-Novakovic

Abstract—Goal: Contractile response and calcium han-
dling are central to understanding cardiac function and
physiology, yet existing methods of analysis to quantify
these metrics are often time-consuming, prone to mistakes,
or require specialized equipment/license. We developed
BeatProfiler, a suite of cardiac analysis tools designed to
quantify contractile function, calcium handling, and force
generation for multiple in vitro cardiac models and apply
downstream machine learning methods for deep phenotyp-
ing and classification. Methods: We first validate BeatPro-
filer’s accuracy, robustness, and speed by benchmarking
against existing tools with a fixed dataset. We further con-
firm its ability to robustly characterize disease and dose-
dependent drug response. We then demonstrate that the
data acquired by our automatic acquisition pipeline can
be further harnessed for machine learning (ML) analysis
to phenotype a disease model of restrictive cardiomyopa-
thy and profile cardioactive drug functional response. To
accurately classify between these biological signals, we
apply feature-based ML and deep learning models (tem-
poral convolutional-bidirectional long short-term memory
model or TCN-BiLSTM). Results: Benchmarking against ex-
isting tools revealed that BeatProfiler detected and ana-
lyzed contraction and calcium signals better than existing
tools through improved sensitivity in low signal data, re-
duction in false positives, and analysis speed increase by

Manuscript received 4 November 2023; revised 13 February 2024 and
10 March 2024; accepted 10 March 2024. Date of current version 5
April 2024. The work of Barry M. Fine and Gordana Vunjak-Novakovic
was supported by the National Institutes of Health under Grant P41
EB027062. The work of Gordana Vunjak-Novakovic was supported in
part by the National Institutes of Health under Grant 5R01HL076485-15,
in part by the National Science Foundation under Grant NSF1647837,
and in part by National Aeronautics and Space Administration under
Grant NNX16AO69A. The work of Barry M. Fine was supported in
part by the National Institutes of Health under Grant R01HL166387
and in part by Abramova Foundation. The review of this article was
arranged by Editor Paolo Bonato. (Corresponding author: Gordana
Vunjak-Novakovic.)

Youngbin Kim, Kunlun Wang, Roberta I. Lock, Trevor R. Nash, Sharon
Fleischer, and Bryan Z. Wang are with the Department of Biomedical
Engineering, Columbia University, New York, NY 10032 USA.

Barry M. Fine is with the Department of Medicine, Division of Cardiol-
ogy, Columbia University Medical Center, New York, NY 10032 USA.

Gordana Vunjak-Novakovic is with the Department of Biomedical En-
gineering, Columbia University, New York, NY 10032 USA, and also
with the Department of Medicine, Division of Cardiology, Columbia Uni-
versity Medical Center, New York, NY 10032 USA (e-mail: gv2131@
columbia.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/OJEMB.2024.3377461, provided by the authors.

Digital Object Identifier 10.1109/OJEMB.2024.3377461

7 to 50-fold. Of signals accurately detected by published
methods (PMs), BeatProfiler’s extracted features showed
high correlations to PMs, confirming that it is reliable and
consistent with PMs. The features extracted by BeatProfiler
classified restrictive cardiomyopathy cardiomyocytes from
isogenic healthy controls with 98% accuracy and identi-
fied relax90 as a top distinguishing feature in congruence
with previous findings. We also show that our TCN-BiLSTM
model was able to classify drug-free control and 4 cardiac
drugs with different mechanisms of action at 96% accu-
racy. We further apply Grad-CAM on our convolution-based
models to identify signature regions of perturbations by
these drugs in calcium signals. Conclusions: We anticipate
that the capabilities of BeatProfiler will help advance in
vitro studies in cardiac biology through rapid phenotyp-
ing, revealing mechanisms underlying cardiac health and
disease, and enabling objective classification of cardiac
disease and responses to drugs.

Index Terms—Calcium handling, cardiac analysis, con-
tractile function, drug response, machine learning (ML).

Impact Statement— BeatProfiler rapidly quantifies con-
tractile function and calcium handling of in vitro cardiac
models enabling ML classification of cardiac disease and
cardioactive drugs.

I. INTRODUCTION

THE ability to reliably assess cardiac function using in
vitro models is crucial in modeling functional decline

associated with cardiac injury, disentangling elements of genetic
or complex multifactorial diseases, and effectively evaluating
cardioprotective drug response [1]. Cardiomyocyte function is
evaluated in vitro from traces of cardiac contractions obtained
from brightfield and phase-contrast videos and calcium signals
using ion-sensitive dyes and genetic reporters [2], [3]. To extract
metrics that reflect functional changes accompanying a disease
or drug exposure in a fast, reliable, and unbiased manner, calcium
and contractile videos must be further processed (Fig. 1(a)).

Existing methods have significant limitations that hinder typi-
cal biomedical researchers from using them (Table S1-3) [4], [5],
[6], [7], [8], [9], [10], [11]. There is no single software that can
analyze both contractile and calcium handling functions through
consolidation of multimodal analysis into a singular integrated
tool. They are often dependent on external programs such as
ImageJ or MATLAB, requiring additional setup. Analysis with
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Fig. 1. Study Overview and BeatProfiler pipeline. (a) In vitro cardiac functional analysis workflow. (b) BeatProfiler analysis pipeline. Upload data,
configure settings, and export analysis (top to bottom). (c) BeatProfiler graphical user interface at the export page. Components are labeled as
follows: 1) home 2) upload 3) configuration 4) video settings 5) trace settings 6) export 7) previous page 8) progress message 9) abort analysis
10) min, max, close 11) file browse 12) help 13) toggle selection 14) progress bar 15) analyze and export.

these methods often requires manual parameter inputs, hindering
high throughput analysis. Many methods are sensitive to noise
and artifacts, preventing accurate analysis in low-signal videos.
Compatibility with various file types can pose problems for
previous methods that are limited to a single or a few file types.
The lack of automated mask identification for many of these
methods results in low-quality signals. Lastly, many existing
methods are either proprietary or deprecated and no longer
available online.

BeatProfiler was designed to overcome limitations of existing
methods by: i) accurate analysis of multimodal data (brightfield
and fluorescent videos), ii) assessment of different in vitro
models (i.e., monolayer, cardiac spheroid, engineered tissue),
iii) software integration into a fully automated pipeline to avoid
user bias and improve reproducibility, iv) data preparation and
preprocessing for ML applications, v) scalable near real-time
compute to enable high throughput analysis, and vi) provision
of an interactive, user-friendly GUI (Fig. 1(b) and (c)).

There is also a need to facilitate ML applications to obtain
more meaningful information from complex functional data,
as evidenced by its utilization in drug discovery, medical di-
agnostics, protein design, and sequencing analysis [12], [13],
[14], [15], [16], [17]. Several groups have applied traditional
ML to classify contractile and calcium responses of healthy
and diseased cardiomyocytes [18], [19], [20] and cardiac drug

responses in vitro [21], [22]. However, these approaches have
mostly been restricted to feature-based ML, which is limited by
predefined parameters extracted from the original contractile or
calcium time series. These parameters may be sufficient in sim-
ple tasks, as demonstrated in our restrictive cardiomyopathy dis-
ease classification, but they fail in more complex problems due to
suboptimal and/or biased feature selection. Deep learning, which
can overcome these limitations, has only been applied in a few
binary classifications of induced pluripotent stem cell derived
cardiomyocytes (iPS-CMs) [23]. As predicting cardioactivity
in preclinical models is of great interest for drug development,
we demonstrate the application of deep learning beyond simple
binary classification in classification of four drugs based on their
mechanisms of action with drug-free control cardiomyocytes.
We then applied gradient-weighted class activation mapping
(Grad-CAM) in our drug classification tasks to gain insight into
convolution-based deep learning models and validate our model
on drugs with known effects.

We have developed BeatProfiler to address the need for a uni-
fied, user-friendly program to rapidly process large multimodal
datasets of in vitro cardiac models such as monolayers, cardiac
spheroids, and engineered tissues. BeatProfiler is a versatile
software platform capable of analyzing videos in many formats
(tif, mp4, mov, nd2, etc.) as well as contractile or calcium traces
in Excel format, with capability to extract features, segment
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single beats, and prepare data for further ML analysis. We
first validate BeatProfiler against existing standards and confirm
its ability to detect changes from disease and drugs. We then
profile healthy iPS-CM and isogenic iPS-CM with restrictive
cardiomyopathy-causing variant using an existing dataset [24]
and classify them by ML using functional cell responses. We fur-
ther substantiate the capabilities of BeatProfiler and the related
automated data acquisition pipeline in a proof-of-concept study
of classifying cardioactive drugs by their mechanism of action
using ML (Fig. S2A). Using Grad-CAM, we validate our models
by highlighting important regions involved in their predictions.
We illustrate the modularity of our tools through analysis of
different data modalities within high-throughput contexts. Our
data acquisition, analysis, and ML pipeline enable deeper insight
into in vitro cardiac models, facilitating a more comprehensive
understanding of functional impacts of disease and aiding in
developing novel therapeutics.

II. MATERIALS AND METHODS

A. BeatProfiler Development

BeatProfiler was implemented in Python 3 with dependencies
including NumPy, SciPy, pandas, scikit-learn, matplotlib, FFm-
peg, nd2reader, PySide2, and PyTorch. The BeatProfiler library
is available as a pip package for direct use in Python. The GUI
wrapper was designed using QT Designer and packaged into a
Windows and MacOS software using PyInstaller.

B. Automated Pillar Identification Through Deep
Learning Object Detection

An object detection model based on YOLOv8 architecture
was trained to identify two pillar heads present in each image.
To automatically detect pillar heads in the milliPillar platform,
we trained an object detection algorithm, YOLOv8 [25]. 1532
images were manually labeled and split into train, validation, and
test sets at 70:20:10 ratio. Each training image was randomly
augmented three times by flipping, rotating, changing bright-
ness, changing saturation, and Gaussian blurring to artificially
generate more samples.

We evaluated the model against a previously unseen dataset,
achieving mean average precision (mAP) score of 0.993 when
tested at intersection over union (IOU) threshold of 0.5, as
measured by area under the precision-recall curve (Fig. S1B).

C. Automated Tissue Width Measurement Through
Deep Learning Segmentation

A YOLOv8 instance segmentation model was trained to seg-
ment pixels belonging to the tissue (Fig. 2(k)). We manually
labeled 737 tissues to train a segmentation algorithm using
YOLOv8. The same split ratio was used as above for train,
validation, and test sets with the same random augmentations.
The mask segmentation was used to automatically determine
tissue widths for milliPillar tissues by measuring the distance of
the line within the mask perpendicular to the line connecting the
centers of each pillar head and crossing the midpoint between
the centers as detected by the previous algorithm.

From the segmentation mask, tissue width was determined
at the midpoint between the two pillar heads identified by the
previous model. When validated against a previously unseen
test set, the segmentation algorithm had an mAP of 0.995 at
IOU threshold of 0.5 (Fig. S1B).

D. Datasets

We acquired FLNCΔGAA, FLNCΨWT, and GCaMPΔGAA,
GCaMPΨWT data through our previously published study [24].
Dataset for drug classification was acquired as described in the
automated data acquisition section in the supplementary.

Each dataset was filtered to drop low-quality samples by
discarding samples with bpm < 20 (slow beating), SDRR > 0.7
(irregular beating/noise), and amplitude > 1 (imaging artifact).

For disease classification, the dataset (n=352 for ΨWT and
n=296 for ΔGAA) was stratified based on the label and ran-
domly split into train and test sets at 85:15 ratio. We took 25
features extracted from each sample and normalized each feature
to have mean of 0 and standard deviation of 1 to use as input for
each model.

Videos for drug studies were analyzed through BeatProfiler
to generate three input datasets for machine learning: feature
summary (tabular), photobleach corrected single beat segments
(time series), and Gramian angular field (image) of time series.
Following single-beat segmentation, the data was processed to
ensure the same input dimension size of 200. Longer segments
were truncated to fit within the length, and shorter segments
were padded with the last value of the segment. Resulting
beats were transformed through Gramian angular field (GAF)
to generate one image per beat. Additional information on
the number of data points and splits across classes are in the
supplementary.

Additional information about cell culture, drug studies, data
acquisition, and data processing is found in supplementary in-
formation. A list of all data used in this paper is outlined in Table
S4.

E. Statistical Analysis

The sample size for each experiment is denoted in the figure
descriptions. Statistical analysis was performed with Prism 9.
Student’s t-test was used to analyze two unpaired groups, and
one-way analysis of variance (ANOVA) with Tukey post hoc
test was used to compare more than two groups. Significance
asterisks denote the following: n.s.: p > 0.05, ∗: p ≤ 0.05, ∗∗: p
≤ 0.01, ∗∗∗: p ≤ 0.001, and ∗∗∗∗: p ≤ 0.0001. Error bars in all
figures denote standard deviation.

III. RESULTS

A. BeatProfiler Analysis Pipeline

BeatProfiler was developed to analyze cardiac traces, segment
single beats, and assess functional features using brightfield
and fluorescent videos of monolayers, spheroids, and tissues.
It enables quantitative profiling of cardiac function in three
modalities: contractility, calcium handling, and tissue pillar
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Fig. 2. BeatProfiler analyzes contractile function, calcium handling,
and pillar deflection. From top to bottom: Diagram and analysis pipeline
for brightfield contractility, calcium handling, and pillar deflection in or-
der of monolayer, spheroid, and engineered tissue. (a) Graphical rep-
resentation of contractility measurements. (c) Representative frames
extracted from contractility videos. (c) ROI mask generated for each
biological model. (d) Contractility traces for each biological model. (e)
Graphical representation of calcium transient measurements. (f) Repre-
sentative frames extracted from calcium videos. (g) ROI mask generated
for each biological model. (h) Calcium traces for each biological model.
(i) Graphical representation of pillar deflection measurements. The left
and right pillars and tissue width were automatically identified by deep
learning. Points for each pillar were used to track pillar deflection over
time. (j) Representative frames extracted from a pillar deflection video
for an engineered tissue. (k) ROI mask generated with deep learning.
(l) Active force trace derived from pillar deflection.

deflection–uniaxial deflection of pillars to which tissues are
attached.

The first modality, contractility, processes brightfield or phase
contrast videos to quantify omnidirectional cardiomyocyte con-
traction (Fig. 2(a)). This method quantifies beating of mono-
layers, spheroids, and engineered tissues in a direction-agnostic
manner, enabling analysis regardless of beating orientation (uni-
axial, multiaxial, or radial) (Fig. 2(b)). Masks are automatically

calculated to identify regions of interest (ROI), as described
further in supplementary (Fig. 2(c)). Using the principle of pixel
intensity differences in reference to video frames at the relaxed
state, the contractile time series is extracted from the masked
video (Fig. 2(d)).

The second modality, calcium handling, analyzes calcium
transients by tracking pixel intensity over time (Fig. 2(e)). Also
compatible with 2D or 3D biological models (Fig. 2(f)), this
modality automatically masks ROI using the same principles
outlined above (Fig. 2(g)). In calcium imaging, a common
phenomenon is photobleaching, in which baseline fluorescent
intensity decays over time (Fig. S1A). To correct for this effect,
BeatProfiler is optimized to automatically impute the changing
baseline fluorophore decay (F0) (Fig. 2(h)).

The last modality, tissue pillar deflection, also analyzes
brightfield or phase contrast contractile videos. In this case,
uniaxial contractile force generated by engineered tissues is
quantified (Fig. 2(i)) by optical flow tracking of pillars displaced
by force exerted by the attached tissue. To enable this analysis,
users define two regions on the pillars to track over time.
Within the specified regions, a fixed set of points is selected
to track over time (Fig. 2(j)). Distance between the two pillars
is computed after discarding poorly tracked points (Movie S1)
[26]. The pillar displacement is translated to force if the user
provides the displacement-force relationship determined by the
tissue platform’s mechanical properties (Fig. 2(l)). Tissue stress,
defined as the force divided by tissue cross-sectional area, is
calculated using tissue width assuming that tissue cross-sections
are circular. This semi-automated approach is compatible with
most engineered tissue platforms, requiring user-labeled pillars
and tissue widths.

To expedite the analysis and reduce potential bias, we sought
to fully automate pillar detection and tissue width measurements
for one particular setting, the milliPillar platform [9], which
was previously developed and characterized in our lab. We
achieved this using two deep learning models with YOLOv8
architecture, which are described in supplemental materials.
Notably, manual pillar distance and tissue width measurements
compared to BeatProfiler’s deep learning based measurements
show high correlation coefficients of R2=0.935 and R2=0.973,
respectively (Fig. S1C). Automated measurements of these two
parameters enabled complete end-to-end analysis for milliPillar
tissues from video to final output.

BeatProfiler can process extracted traces according to user-
defined configurations and create an export folder in a specified
directory containing output files. The outputs include contrac-
tile, calcium, force, stress, displacement traces, and single-beat
segmentations from each video. Functional metrics describing
beat frequency, velocity, contraction time, and relaxation time
are exported for individual beats and summarized at the sample
level (Fig. S1D, Table S5). Additionally, BeatProfiler quantifies
force and stress generated by tissues for the pillar deflection
modality (Fig. S1E). Images of traces and masks are exported
for easy quality control. Segmented individual beats transformed
through Gramian angular field, a method for representing time
series data in image formats, are also exported for further deep
learning applications.
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Fig. 3. Validation of BeatProfiler’s extracted features (a) Representative contractile traces in monolayer from BeatProfiler (BP) and a previously
published method (PM1). (b) Representative calcium traces in monolayer (BP and PM2). (c) Representative pillar deflection traces in milliPillar
tissues (BP and PM3). (d) Pearson correlation between features extracted by BP and PM1 (n=40 for monolayers, n=19 for spheroids, n=118 for
tissues). Clockwise from top left: beats per minute (BPM) (p < 10−102), full-width half max (FWHM) (p < 10−124), relax90 (p < 10−74), contract90
(p < 10−146). (e) Pearson correlation between features extracted by BP and PM2 (n=35 for monolayers, n=46 for spheroids, n=163 for tissues).
Clockwise from top left: beats per minute (BPM) (p < 10−307), full-width half max (FWHM) (p < 10−264), relax50 (p < 10−226), contract50 (p <
10−157). (f Pearson correlation between features extracted from BP and PM3 (n=137 for tissues). Clockwise from top left: BPM (p < 10−162),
contraction speed (p < 10−97), passive stress (p < 10−88), active stress (p < 10−99). (g) Functional video analysis time comparison (BP and PM1).
15 brightfield videos (5 monolayers, 5 spheroids, and 5 tissues) were measured 5 times. (h) Functional video analysis time comparison (BP and
PM2). 15 calcium videos (5 monolayers, 5 spheroids, and 5 tissues) were measured 5 times (i) Functional video analysis time comparison (BP and
PM3). 5 tissue videos were measured 5 times. (J to L) Confusion matrix indicating correctly identified beats, noise misidentified as beats (False
positive), undetected or misanalyzed beats (False negative). (j) Contractility analysis accuracy matrix (48 monolayer, 32 spheroid, and 34 tissue
videos). (k) Calcium analysis accuracy matrix from an aggregate of 48 monolayer videos, 37 spheroid videos, and 97 tissue videos. (l) Tissue pillar
deflection analysis accuracy matrix (163 tissue videos).

B. Rapid Measurements of Contractile, Tissue Pillar
Deflection, and Calcium Function in Correlation With
Existing Standards

Comparative experiments were conducted to assess the ver-
satility of BeatProfiler and benchmark its performance against
previously published methods (PM 1–3) [4], [7], [9] for each
functional modality: contractility, calcium handling, and tissue
pillar deflection. The published methods were chosen based on
the following criteria: 1) code and methodologies are described
and documented online in a well cited publication, 2) software

is freely available to download at the time of this manuscript’s
publication.

To assess BeatProfiler’s multimodal feature extraction, we
compared BeatProfiler’s contractility analysis to PM1, calcium
analysis to PM2, and pillar deflection analysis to PM3 [4],
[7], [9]. Representative traces from the three video modalities
from BeatProfiler and existing methods are nearly congruent
(Fig. 3(a)–(c). Metrics extracted from BeatProfiler show high
correlations with those obtained by published methods using
videos of different biological in vitro models, including mono-
layers, cardiac spheroids, and engineered tissues [4], [7], [9]
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(Fig. 3(d)–(f), Fig. S4A-C). For this analysis, videos that failed
to be properly analyzed by PM 1–3, but not BeatProfiler, were
excluded from validation.

To assess the computational speed and robustness of Beat-
Profiler, we compared its performance with existing methods
[4], [7], [9] on the same computer. BeatProfiler performed more
than seven times faster than previous methods in analyzing
contractility and calcium modalities and over 50 times faster
in analyzing pillar deflection in processing a set of test videos
(Fig. 3(g)–(i).

We further validated BeatProfiler’s accuracy and robustness
by manually reviewing videos to assess misanalyzed/undetected
beats and noise misidentified as beats. Unlike the previous
comparison shown in Fig. 3(d)–(f), we included all videos in
the analysis including those that failed to be properly analyzed
by any given software. We determined that it reduced errors com-
pared to existing methods (Fig. 3(j)–(l)). All methods performed
well when the signal-to-noise ratio was high, but BeatProfiler
was found to robustly analyze beats even when signals were
suboptimal due to small contraction magnitudes or dim calcium
fluorescent signals as further detailed in supplementary (Fig.
S4D-I). BeatProfiler was especially useful in the pillar deflection
modality due to its ability to robustly quantify subpixel level
of contractions, a challenging feat that previous methods fail
to quantify when tissues are exhibiting minute contractions
imperceptible to the human eye.

C. Validation of BeatProfiler’s Disease Phenotyping

We demonstrate the ability to detect functional changes ac-
companying disease. To demonstrate, we investigated restrictive
cardiomyopathy resulting from a filamin C (FLNC) variant.
BeatProfiler measured contractility, calcium transients, and tis-
sue pillar deflection in iPS-CM monolayers and cardiac tissues
engineered from these cells. Videos taken from a previously
published dataset [24] were analyzed both with BeatProfiler and
PM 1–3 to validate the accuracy of BeatProfiler. BeatProfiler
identified phenotypic differences in all three modalities, and
results were confirmed using PM 1–3. In congruence with previ-
ous findings, brightfield contractile analysis revealed impaired
contraction and relaxation speeds, and calcium imaging revealed
significant prolongation of tau and relax90 (Fig. 4(a) and (b), Fig.
S5A-B), indicating impaired calcium handling resulting from
the genetic mutation. In engineered tissues, decreased active
force generation and increased passive tension also reflected a
restrictive cardiomyopathy phenotype seen in previous studies
(Fig. 4(c) and Fig. S5C) [24].

D. Validation of BeatProfiler’s Detection of
Dose-Dependent Drug Response

Analyzing drug response is of particular interest for drug
discovery and drug safety assessment. Therefore, to assess
BeatProfiler’s ability to detect drug effects on cardiac function,
iPS-CM response to isoproterenol, a β-adrenergic agonist with
positive chronotropic effects, was analyzed at various concen-
trations. Dose-dependent functional changes were observed in
engineered tissues for all three modalities, indicated by a positive

relationship between concentration and beat frequency in addi-
tion to other temporal metrics (Fig. 4(d)–(f) and Fig. S5D-F).
EC50 of isoproterenol was previously reported as 12.9 nM
to 315 nM in stem cell derived cardiomyocytes [27], [28]. In
contrast, the adult human ventricular cardiomyocytes exhibit an
EC50 of 1.2 nM [29]. Our estimated EC50s of isoproterenol
derived from each feature fall within this range in accordance
with previously published data.

E. High-Throughput Profiling of Restrictive
Cardiomyopathy and Feature-Based Ml Classification

To demonstrate the capability of our pipeline for profiling
disease phenotypes, we examined the spontaneous calcium re-
sponse in a patient derived iPS-CM model of restrictive car-
diomyopathy (FLNCΔGAA) and its isogenic CRISPR-corrected
control (FLNCΨWT) using a high-throughput FLIPR assay from
a previously published study [24] (Fig. 5(a)). We analyzed
the time series traces using BeatProfiler, correcting for photo-
bleaching, and found several functional differences among the
twenty-five extracted features (Fig. 5(b)) in congruence with
published data [24].

Using the twenty-five features extracted by BeatProfiler as
input, ML models were trained to distinguish calcium responses
of diseased and healthy cardiomyocytes. Among several feature-
based ML models [30], [31], [32], [33], [34], [35], [36], SVC was
identified as the best model based on its classification accuracy
of 98.98% (Fig. 5(c) and (d)). Ranking the feature importance by
linear SVC coefficient magnitudes revealed that the most critical
feature associated with diseased cardiomyocytes was prolonged
relax90, a metric of calcium decay duration in line with the
impaired relaxation phenotype associated with restrictive car-
diomyopathy [24] (Fig. 5(e)).

F. Automated Acquisition of Drug Response and
Deep Learning Approaches to Classify Cardioactive
Drugs

To illustrate another application of our pipeline, we acquired
the calcium response of iPS-CM-GCaMP6f, a genetically en-
coded calcium indicator, to several cardioactive drugs with
different properties using our customized automated acquisition
system (Fig. S1). Quinidine, propranolol, E-4031, and verapamil
were selected for their sodium channel, β-adrenergic, potassium
channel, and calcium channel blocking effects, respectively.
Calcium response to each drug is shown in a representative
overlay of single-beat time series (Fig. 6(a)). Notably, quinidine
and verapamil were associated with increased and decreased
upstroke time, respectively, as measured by contract50 in line
with previous findings (Fig. 6(b)) [37]. All drugs modulated
tau, the time decay constant [38]. E-4031 was associated with
increased RMSSD, a metric of interbeat variability, owing to its
proarrhythmic potential [39].

Next, we sought to develop ML algorithms to classify drugs
with different mechanisms of action. We explored several meth-
ods, from traditional feature-based ML to deep learning models
that use raw traces as input. The best model, a custom-designed
TCN-BiLSTM model (Fig. 6(c)) that takes a one-dimensional
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Fig. 4. Validation of BeatProfiler’s capability to profile drugs and diseases (A to C) BeatProfiler identifies phenotypic differences between
patient-derived iPS-CM (FLNCΔGAA) and CRISPR-corrected iPS-CM (FLNCΨWT) in congruence with existing methods. (a) Contraction (left) and
relaxation speed (right) are impaired in patient-derived cardiomyocytes in contractile imaging of monolayers (n=36 for ΔGAA, n=42 for ΨWT). (b)
Relax90 (left) and tau (right) are increased in patient-derived cardiomyocytes in calcium imaging of monolayers (n=34 for ΔGAA, n=36 for ΨWT).
(c) Active force (left) generation is impaired, and passive tension (right) is increased in patient-derived cardiomyocytes in pillar tracking of engineered
tissues (n=12 for ΔGAA, n=6 for ΨWT). (D to F) BeatProfiler identifies dose-dependent isoproterenol drug response in engineered tissues in
congruence with existing methods. Each tissue normalized to its values at 10−11M. (d) Isoproterenol increases BPM (left; EC50 estimated by BP:
4.742 nM, EC50 estimated by PM1: 3.257 nM) and decreases FWHM (right; EC50 estimated by BP: 3.983 nM, EC50 estimated by PM1: 2.649 nM)
in brightfield contractile imaging of tissues (n=8). (e) Isoproterenol increases BPM (left; EC50 estimated by BP: 13.76 nM, EC50 estimated by
PM2: 12.99 nM) and decreases relax50 (right; EC50 estimated by BP: 19.11 nM, EC50 estimated by PM2: 15.83 nM) in calcium imaging of tissues
(n=11). (f) Isoproterenol increases BPM (left; EC50 estimated by BP: 5.426 nM, EC50 estimated by PM3: 5.920 nM) and relaxation speed (right;
EC50 estimated by BP: 10.99 nM, EC50 estimated by PM3: 9.130 nM) in brightfield pillar tracking of tissues (n=8).

time series as input, achieved an average accuracy of 96.25%
(Fig. 6(d), Fig. S3A-D) and a weighted average F1 score of
0.9623 on the test set (Fig. 6(e), Table S6). In contrast, traditional
feature-based approaches achieved only 45% to 79% accuracy.
We also transformed our time series dataset into images to use
as input to leverage widely available state-of-the-art image deep
learning models. To expedite training and improve accuracy,
we applied transfer learning by fine-tuning models pre-trained
on ImageNet, a natural image dataset. This resulted in 2–5%
increase in classification accuracy for each model. Image-based
deep learning models performed better than feature-based mod-
els and were comparable to time series deep learning models
with transfer learning.

To determine the optimal number of training samples re-
quired for high accuracy, we trained best-performing models
for each input data type with a fraction of the total training

dataset while fixing the validation and test sets. Namely, models
tested were hybrid TCN-BiLSTM [40], [41] for time series
input, SqueezeNet [42] with transfer learning and DenseNet [43]
without transfer learning for GAF images, and random forest
[35] for features. Feature-based ML had diminishing returns
with more data, while deep learning approaches continued to
improve with more data (Fig. S6A).

G. Deep Learning Model Interpretation Highlights
Regions of Importance

We applied model interpretation methods to several drug clas-
sification models to better understand model decision-making
processes. The best feature-based model, random forest, was
interpreted by measuring the reduction in accuracy resulting
from randomization of each feature one at a time. This allowed
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Fig. 5. Phenotyping restrictive cardiomyopathy with BeatProfiler (a)
Representative calcium traces of GCaMPΔGAA and isogenic control
GCaMPΨWT in monolayer. (b) GCaMPΔGAA is associated with in-
creased tau, increased relax90, decreased contract90, increased am-
plitude, and no changes in FW90M in calcium imaging (n=352 for
GCaMPΨWT and n=296 for GCaMPΔGAA). (c) Classification accuracy of
feature-based machine learning methods. (d) Confusion matrix of sup-
port vector classifier (SVC) classification model. (e) Feature importance
for the SVC model.

Fig. 6. Profiling cardioactive drug response with BeatProfiler (a) Rep-
resentative calcium traces of iPS-CM perturbed with cardioactive drugs
in monolayer. (b) Contract50 is increased by quinidine and decreased by
E4031 and verapamil. Tau is increased by quinidine, propranolol, and
E4031 and decreased by verapamil. RMSSD, a measure of interbeat
variability, is increased in E4031, an arrhythmogenic drug. (544 samples
for control, 376 samples for quinidine, 326 samples for propranolol, 319
samples for E-4031, and 243 samples for verapamil). (c) Model accu-
racy colored by input data types. (d) Confusion matrix of TCN-BiLSTM
summarizing true/false positives and negatives.

us to rank the importance of each input feature in this model
(Fig. S6B), revealing relax50, tau, standard deviation of FWHM,
amplitude, and bpm as the five most important features.

Our best overall models were based on deep learning, so we
turned to Grad-CAM to visualize regions of importance for
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Fig. 7. Deep learning drug classification model interpretation through
Grad-CAM. From top to bottom: calcium trace, trace with Grad-CAM
heatmap highlighting region of importance in the 1D CNN model, input
GAF image of the same trace, GAF highlighting region of importance
in the SqueezeNet model with transfer learning. (a) Representative
calcium trace of the no drug class. Multiple regions are highlighted in
the time series. Upstroke and downstroke regions are highlighted in the
GAF image. (b) Representative calcium trace of quinidine. The upstroke
region is highlighted in the time series. Peak and downstroke regions
are highlighted in the GAF image. (c) Representative calcium trace
of propranolol. The latter downstroke region is highlighted in the time
series. The latter downstroke region is highlighted in the GAF image.
(d) Representative calcium trace of E-4031. The downstroke region is
highlighted in the time series. The downstroke region is highlighted in
the GAF image. (e) Representative calcium trace of verapamil. The peak
region is highlighted in the time series. The peak region is highlighted in
the GAF image.

specific examples. As Grad-CAM is only validated in
convolution-based models, which TCN-BiLSTM is not, we
applied it to the 1D CNN time series model and the CNN-based
SqueezeNet image model with transfer learning instead, which
had classification accuracy above 90%.

We show representative Grad-CAMs for each drug highlight-
ing regions of importance for classification, visualizing the same
sample in two models with different data representations. We
identified unique patterns associated with each drug, reflecting
each drug’s unique perturbations of the cardiac cycle (Fig. 7).
Grad-CAM enabled visualizations for regions of importance in
the deep learning model decision-making process, reflecting a
drug’s effect in cardiomyocyte calcium response.

IV. DISCUSSION

There is a clear need for rapid and user-friendly software to
reliably quantify in vitro cardiac function in multiple imaging
modalities in applications to uncover cardiac disease pheno-
types, unravel the underlying disease mechanisms, and detect
cardioactive drug effects. However, there is currently a lack
of user-friendly tools for rapid and unbiased analysis of this
kind. BeatProfiler provides fast and robust cardiac contractile
and calcium function analysis in monolayers, spheroids, and
engineered tissues.

Available at beatprofiler.github.io along with documenta-
tions, example data, and tutorials, the Windows and macOS-
compatible GUI was developed in Python and PySide2 as
a standalone software, enabling users to download a single
installer without additional setup. Furthermore, BeatProfiler’s
speed improvements enable true real-time monitoring through
simultaneous video acquisition and analysis. Specifically de-
signed for high throughput experiments, BeatProfiler enables
analysis of thousands of samples at once. BeatProfiler’s strength
lies in its versatility and customizability while keeping the GUI
simple and easy to use. In addition, advanced users can use the
Python library to customize analysis to fit their needs. Paired
with our automated acquisition program and ML algorithms,
BeatProfiler enables high-throughput experiments and analysis
on a standard microscope and computer system.

BeatProfiler was validated for reliably detecting functional
perturbations due to disease and drugs. In congruence with previ-
ous findings, pathogenic RCM iPS-CM monolayers showed pro-
longed contraction and relaxation velocity in contractility imag-
ing and prolonged tau in calcium imaging indicating impaired
relaxation. Restrictive phenotype was observed in engineered
tissues through impaired active force generation and increased
resting tension. BeatProfiler also quantified dose-dependent
positive chronotropic response to β-adrenergic agonist isopro-
terenol in various functional metrics derived from contractility
imaging, tissue pillar tracking, and calcium imaging, thereby
confirming BeatProfiler’s ability to robustly detect drug-induced
changes in cardiac function.

As cardiotoxicity is a major cause for concern in drug de-
velopment, BeatProfiler is designed to extract key metrics that
are crucial for evaluating cardiotoxic potential. Specifically, it
quantifies interbeat variability through metrics such as Standard
Deviation of RR intervals (SDRR) and Root Mean Square
of Successive Differences (RMSSD). These metrics are valu-
able for flagging compounds with potential cardiotoxic effects,
as increased variability can be indicative of cardiac stress or
dysfunction. Additionally, BeatProfiler can assess the risk of
prolonged QT intervals by measuring changes in tau. Although
our study did not focus on fluorescent voltage indicators, it’s
pertinent to note that BeatProfiler is also capable of analyzing
action potential duration (APD90) from voltage data. This is par-
ticularly relevant for detecting drugs that may cause prolonged
action potential duration, a known risk factor for cardiotoxicity.
By leveraging these capabilities, BeatProfiler presents a versatile
tool for early detection of cardiotoxicity, thereby aiding in the
safer development of new pharmaceutical compounds.

We demonstrated several applications for using BeatProfiler,
one of which was to pinpoint disease phenotypes associated
with a restrictive cardiomyopathy-associated gene using ML.
We illustrate that BeatProfiler easily integrates into existing
pipelines, such as a FLIPR assay, to extract relevant features.
In line with previous findings, the most distinctive feature of
GCaMPΔGAA compared to GCaMPΨWT identified in the calcium
transient was increased relax90. This rapid quantification of
cardiac function and ML classification could be applied to detect
functional changes brought on by novel mutations or variants of
uncertain significance in a high-throughput manner.

beatprofiler.github.io


KIM et al.: BEATPROFILER: MULTIMODAL IN VITRO ANALYSIS OF CARDIAC FUNCTION ENABLES ML CLASSIFICATION 247

We also investigated cardioactive drug responses of iPS-CMs
acquired by our automated imaging pipeline to demonstrate ML-
based identification of cardioactivity by mechanism of action.
Like the previous application, we applied feature-based ML
but instead found limitations in traditional models, especially
in classifying quinidine, propranolol, and E-4031 likely due to
the indiscriminate nature of these blockers. Several drugs have
secondary blocking effects that overlap with each other. Quini-
dine is a Na-blocker also known to have K-blocking effects.
Propranolol is a β-blocker with Na-blocking effects.

To tackle the limitation of feature-based models, we applied
deep learning approaches to achieve higher classification per-
formance through a different input representation to extract
information not fully captured in predetermined features. While
deep learning models are burdened by reduced explainability and
increased computational resources, advancements in explain-
able AI such as Grad-CAM, increase in GPU computing power,
and a decrease in computing cost in recent years have made
this approach more viable. We explored TCN and Bi-LSTM as
these methods have proven successful in other temporal datasets
[44], [45], [46], [47], [48]. TCN and BiLSTM performed well
at 94.12% and 92.65% average accuracy, respectively. Our best
model, a hybrid model with both TCN and BiLSTM compo-
nents, achieved 96.25% average accuracy, suggesting that a
synergistic effect of feature extraction and improved modeling
of complex temporal dependencies increased the accuracy.

While our customized TCN-BiLSTM model, which takes
time series beats as input, performed the best, we wanted to
demonstrate that existing models could also achieve good results
by non-ML experts. Image classification models widely avail-
able through resources such as PyTorch, TensorFlow, and fastai
require just a few lines of code [49], [50], [51], which motivated
us to add an image transformation feature to BeatProfiler to help
democratize and maximize potential downstream applications
with deep learning.

We show comparable results of our best-performing models
with several popular image models without any modifications.
Networks pre-trained on the ImageNet dataset were fine-tuned to
improve the classification significantly. Our best image models
with transfer learning achieved accuracies nearly as high as our
best overall model within just 3–4%.

To identify which calcium trace region is uniquely perturbed
for each drug, we applied Grad-CAM, a technique developed
for deep learning networks based on convolution, to highlight
regions of importance in classification. We show representa-
tive samples for each drug type by applying Grad-CAM to
two convolution-based models (1D-CNN for time series and
SqueezeNet with transfer learning for image). Due to the limi-
tation of this method that restricts its usage to only convolution-
based models, we could not apply it to our best-performing
model, TCN-BiLSTM. Interestingly, we noticed several paral-
lels in highlighted regions with known perturbations in cardiac
action potentials [52]. Decrease in depolarization slope char-
acterizes a class IA Na-blocker. The quinidine trace showing a
highlighted upstroke may suggest Na-blocking may also perturb
that part of the calcium transient. Propranolol trace exhibits a
highlighted area near the end of the trace, alluding to effects of
increased refractory period between beats. The E-4031 trace

highlights the downstroke, congruent with known prolonged
repolarization effects of a K-blocker. The calcium-blocker trace
highlights the peak of the trace, indicating its impact on the
trace amplitude. Lastly, the control trace is highlighted in many
regions likely to rule out other possibilities during decision-
making. While we used Grad-CAM as means for validation
using well known drugs, this suggests it can infer insight into
previously unknown drugs in drug development. BeatProfiler,
combined with the deep learning classification and interpretation
methods described, could help profile cardiac function in the
drug development pipeline to detect and identify the type of
cardioactivity. Additional future directions and limitations for
this study are described in supplementary materials.

V. CONCLUSION

In summary, this study demonstrates capabilities of the all-in-
one analysis tool BeatProfiler in many modalities ranging from
contractility, calcium fluorescence, and uniaxial tissue pillar
deflection. BeatProfiler GUI enables easy, rapid, and accurate
identification of disease phenotypes and drug effects for multiple
biological models (monolayers, spheroids, engineered tissues)
and is available at beatprofiler.github.io. Furthermore, we illus-
trate that ML applications and their interpretations can predict
and profile cardiac function. We foresee that BeatProfiler, the
automated data acquisition pipeline, and ML methods described
here will help advance in vitro cardiac functional assessment,
reveal complex mechanisms in disease, and accelerate drug
discovery.

SUPPLEMENTARY MATERIALS

Supplementary materials include cell culture methods, dataset
details for BeatProfiler validation, experimental details for the
drug study, data acquisition methods, ML train/test splits, and
ML model architectures for drug and disease classification. De-
tailed information about BeatProfiler analysis pipeline, improve-
ments of BeatProfiler from existing methods, and limitations of
BeatProfiler are also outlined.
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