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Valvular heart disease is a globally prevalent cause of morbidity and mortality, with both congenital and acquired

clinical presentations. Tissue engineered heart valves (TEHVs) have the potential to radically shift the treatment

landscape for valvular disease by functioning as life-long valve replacements that overcome the current limitations of

bioprosthetic and mechanical valves. TEHVs are envisioned to meet these goals by functioning as bioinstructive

scaffolds that guide the in situ generation of autologous valves capable of growth, repair, and remodeling within

the patient. Despite their promise, clinical translation of in situ TEHVs has proven challenging largely because of

the unpredictable and patient-specific nature of the TEHV and host interaction following implantation. In light of

this challenge, we propose a framework for the development and clinical translation of biocompatible TEHVs,

wherein the native valvular environment actively informs the valve’s design parameters and sets the benchmarks by

which it is functionally evaluated. (J Am Coll Cardiol 2023;81:994–1003) © 2023 by the American College of

Cardiology Foundation.
V alvular heart disease is a frequent cause of
morbidity and mortality, with an estimated
global prevalence of 49 million patients

affected by rheumatic heart disease and calcific aortic
valve disease combined.1 Heart valve replacements
are a component of at least 10% of adult cardiac sur-
geries in the United States, with a trend of further
growth largely because of the aging population.2,3 In
the pediatric population, pulmonary valve replace-
ments are regularly performed to treat congenital
heart defects requiring reconstruction of the right
ventricular outflow tract.4

Currently, the standard of care is use of mechanical
or bioprosthetic valves, both of which have
limitations. Mechanical valves are thrombogenic,
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and therefore subject patients to lifelong anti-
coagulation,5 whereas bioprosthetic valves have
limited durability, demonstrating structural degra-
dation or calcification within 15 to 20 years of im-
plantation.6 In addition, both valves are unable to
grow and remodel within the patient. Therefore,
pediatric patients with valve replacements must
undergo multiple open-heart surgeries to replace
outgrown valves.4

In situ tissue engineering of heart valves has
emerged as a means of overcoming these limitations
by guiding the generation of an autologous valve
replacement at the site of the original valve. Two types
of in situ tissue engineered heart valves (TEHVs) will
be the focus of this review: 1) polymer-based TEHVs,
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HIGHLIGHTS

� Biocompatible TEHVs represent potential
alternatives to prostheses for replace-
ment of diseased valves.

� Valve design and prototyping should be
informed by the native valve
environment.

� A predictable host interface will facilitate
clinical application of engineered valves.

AB BR E V I A T I O N S

AND ACRONYM S

ECM = extracellular matrix

TEHV = tissue engineered

heart valve

VEC = valvular endothelial cell

VIC = valvular interstitial cell
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which are bioresorbable and acellular7-9; and 2)
decellularized TEHVs derived from in vitro–grown
tissues or explanted xenografts, in the form of an
extracellular matrix (ECM) scaffold.10-12

Despite their immense promise, the clinical trans-
lation of TEHVs has been challenged by the com-
plexities inherent to designing a valve capable of
meeting several, at times conflicting, goals over
multiple spatial and temporal scales. Complexities
are further exacerbated by the unpredictability of in
situ responses following implantation, as well as the
unique challenges associated with regulatory
approval and clinical implementation.

Here, we propose a framework for designing
biocompatible TEHVs, composed of 3 interdependent
phases: 1) defining design parameters informed by
the native valve; 2) functional prototype testing; and
3) preclinical and clinical evaluations. Underlying
each phase is the primary goal of designing a TEHV
capable of guiding the in situ generation of a native-
like autologous valve, which meets the logistic and
regulatory requirements for clinical translation
(Central Illustration).

DESIGN SPECIFICATIONS

The design specifications for a biocompatible TEHV are
informed by the native valve physiology—specifically,
how the formof the valve influences function, from the
level of the matrix composition to the macrostructure.
Simultaneously, valvular disease provides critical
context for designing TEHVs capable of anticipating
and responding to pathologic stimuli in situ.

NATIVE CELL BEHAVIOR. There are 2 main cell types
in the valve. Valvular interstitial cells (VICs), the
predominant cells of the valve leaflet, are responsible
for ECM synthesis during development and regener-
ation.13,14 Throughout growth and remodeling, VICs
demonstrate an activated, myofibroblastic pheno-
type, characterized by proliferation, apoptosis, and
expression of a-smooth muscle actin.15 During injury,
VICs temporarily differentiate back into the
activated phenotype and deposit ECM,
remodeling leaflet tissue.13,14 Valvular endo-
thelial cells (VECs) line the outer surfaces of
the valve leaflet, where they communicate
with VICs to facilitate remodeling and
nutrient transport, while preventing inflam-
mation and thrombosis.16
During remodeling, valve cells function as dynamic
agents, processing their surroundings and generating
appropriate responses: migration, proliferation, dif-
ferentiation, ECM deposition, chemokine production,
or release of remodeling enzymes. Depending on
their environment, the cells may also output re-
sponses antagonistic to tissue homeostasis. For
example, pathological VIC activation has consistently
been associated with valve disease as it results in
overexpression of catabolic enzymes, such as matrix
metalloproteinases, and deposition of disorganized
collagen fibers, creating fibrotic leaflet tissue.17,18

Therefore, a central effort in valve tissue engineer-
ing has been to determine how environmental
elements such as substrate stiffness,19 loading pat-
terns,20 fiber architecture,21 and the presence of ECM-
like proteins22,23 influence valve cell phenotypes.

IMMUNE RESPONSE. In situ tissue generation is
heavily influenced by the host immune response.
Although some inflammation is necessary for neo-
tissue formation, the nature of the host immune
response determines the emergence of chronic
inflammation or successful tissue regeneration.24

Studies have indicated that the host immune
response and scaffold design are interdependent,
with elements such as valve geometry,25 micro-
architecture,26 and composition27 altering the nature
of this response. For example, scaffolds that induce
macrophage elongation or secretion of anti-
inflammatory cytokines have shown promise in pro-
moting regenerative macrophage phenotypes.28

Studies of vascular tissue engineering suggest that
localized scaffold release of a monocyte chemo-
attractant within hours of implantation is associated
with early leukocyte infiltration as well as more rapid
neo-tissue formation and increased collagen align-
ment over the course of 3 months.29 This result is
promising for the potential efficacy of functionalizing
TEHVs with instructive bioactive molecules, even if
they are released within relatively short timeframes.
The role of the inflammatory response in influencing
fibrosis has similarly been shown in cardiac
remodeling, where postinfarct implantation of a
cardiomyocyte-laden patch is associated with
improved left ventricular function compared with
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The development of tissue engineered valves can be envisioned as 3 interdependent phases: 1) defining design parameters (red arrows); 2) experimental and compu-

tational prototyping (blue arrows); and 3) evaluating proposed designs in preclinical and clinical studies (green arrows), ultimately resulting in clinical translation.
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implantation of patches without cardiomyocytes, a
finding attributed to cardiomyocyte-induced para-
crine effects.30 Taken together, these findings indi-
cate that scaffold design informed by inflammatory
responses can influence the host environment toward
demonstrating a proregenerative immune reaction.24

HEMODYNAMICS. Especially important to in situ
valve regeneration are hemodynamics, which
influence mechanobiology by contributing to leaflet
deformation. Physiologically, changes in host hemo-
dynamics—eg, because of development from birth to
adulthood—induce growth and remodeling in the
cardiac valve, with the preservation of mechanical
tissue homeostasis.31 Supraphysiological cyclic
stretch of the valve leaflets can induce increased
expression of matrix remodeling enzymes such as
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matrix metalloproteinases and cathepsins.32 In vitro,
VECs can be stimulated to undergo endothelial-to-
mesenchymal transformation through cyclic strain.
However, the signaling pathway responsible for
endothelial-to-mesenchymal transformation is
dependent on the level of strain, where increasing
strain to 20% is associated with a VEC response
mimicking that which occurs in pathological valve
loading.20 Learning from these processes is important
for understanding how evolving hemodynamics
throughout scaffold remodeling may influence valve
cell behavior and associated neo-tissue production.

SCAFFOLD DEGRADATION. To preserve valve func-
tion throughout remodeling, TEHV scaffolds should
degrade at the rate of neo-tissue generation to pro-
vide an isomorphous tissue replacement with pre-
served integrity. If the scaffold degrades too quickly,
valve function can be lost, and the infiltrating cells
lose a guiding template for regeneration. On the other
hand, delayed scaffold degradation may elicit a sus-
tained inflammatory reaction in vivo.24

The choice of TEHV material is critical for defining
scaffold degradation kinetics. Scaffolds can be
composed entirely from decellularized valve tissue
grown in vitro33 or from bioresorbable polymers,
either natural (ie, collagen and fibrin) or synthetic (ie,
aliphatic polyesters and polyhydroxyalkanoates).34 A
central advantage of polymer-based scaffolds is their
ability to influence scaffold degradation via the scaf-
fold’s chemical properties.24 Understanding the
mechanisms underlying scaffold degradation in situ
is of great importance, as these determine the antic-
ipated rate and pattern of degradation (ie, surface vs
bulk erosion),35 and thereby affect the valve’s me-
chanical and structural properties throughout tissue
remodeling.

A difficulty intrinsic to in situ valve remodeling is
reliably predicting the spatial and temporal kinetics
of scaffold degradation. Computational modeling has
contributed to understanding how cell-mediated
remodeling affects valve geometry and mechanics.36

Nevertheless, patient-specific hemodynamics, im-
mune response to the scaffold, as well as cell
recruitment and behavior all play roles in deter-
mining the scaffold degradation kinetics. And, vice
versa, scaffold degradation may concomitantly affect
valve cell phenotype and ECM deposition.37 There-
fore, methods of serially evaluating the balance be-
tween scaffold degradation and neo-tissue formation,
and correlating this with valve function, are needed
to understand and predict how this balance func-
tionally influences TEHV performance.38 This would
help answer the critical questions: What patterns of
scaffold remodeling lend themselves to preserved
TEHV function? And, what are acceptable bench-
marks for heterogeneity throughout remodeling?

DEVELOPMENT AND FUNCTIONAL TESTING

One of the greatest complexities of heart valve tissue
engineering is the interplay between several param-
eters over multiple spatial and temporal scales.
Interdependence of the valve’s design specifications
raises questions about their interactive effects. For
example, how do changes to the valve micro-
architecture influence the mechanical properties?
How do shifts in the mechanical properties affect
load-bearing behavior and subsequent valve cell
phenotype? And, how do the valve phenotype and
the subsequent remodeling influence, in turn, the
microarchitecture? Such a circle can be either
virtuous or vicious, depending on the molecular,
mechanical, and architectural features of the scaffold
and their constant interaction.

MATERIALS-BASED VALVE ENGINEERING. In
creating a fibrous scaffold suitable for in situ valve
regeneration, the ideal polymer would be elasto-
meric, with anisotropic stress-strain behavior similar
to that of the native leaflet. It would also be fatigue-
resistant, bioresorbable, and nonthrombogenic.34,39

Further developments in polymer science would
facilitate increased control over scaffold degradation
mechanisms and immune response, allowing for the
fabrication of scaffolds designed to meet patient-
specific regenerative capacity.40

It is important to consider how synthetic and nat-
ural polymers can be bioinstructive.41,42 Scaffold ar-
chitecture, composition, and functionalization with
bioactive molecules can all contribute toward cell
recruitment and behavior.24 The fibrous scaffold
microarchitecture is of great importance here. First,
the valve leaflet’s trilayered architecture contributes
to its unique combination of tensile strength and
flexibility, while providing instructive cues during
development, healing, and homeostasis.43 Second,
the scaffold microarchitecture directs neo-tissue ar-
chitecture by contact-guiding infiltrating cells toward
the desired configuration.44

Decellularized TEHVs are bioinstructive in their
use of extracellular matrix as a biomimetic substrate,
which is intended to promote cell infiltration and
homogeneous remodeling. Two prominent fabrica-
tion approaches are as follows: 1) in vitro engineering
of valves in mechanically conditioning bioreactors
(Hoerstrup and Emmert team); and 2) the develop-
ment of valves constructed from tissue tubes



FIGURE 1 Heart Valve Pathophysiology Informs the Design of Tissue Engineered Valves
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(A) In situ heart valve tissue engineering begins with the implantation of the valvular scaffold, followed by remodeling, resulting in the generation of an autologous valve

replacement (arrows). (B) Tissue engineered heart valve (TEHV) design involves variables at the valve, leaflet, and matrix levels, which together support heart valve

generation. Although design variables influence TEHV outcome, they can be altered by in situ factors, such as age, tissue viability, comorbidities, and somatic growth.

Cordoves et al J A C C V O L . 8 1 , N O . 1 0 , 2 0 2 3

Biocompatible Heart Valve Tissue Engineering M A R C H 1 4 , 2 0 2 3 : 9 9 4 – 1 0 0 3

998
(Tranquillo group), both of which have demonstrated
preserved performance up to 1 year in vivo.10,12

PHYSIOLOGICALLY RELEVANT IN VITRO STUDIES.

Directing tissue formation in vivo via scaffold design
cues is challenging because of competing environ-
mental stimuli—rendering postimplant valvular
remodeling the most unpredictable aspect of TEHVs.
Environmental elements can be patient-specific, can
be heterogeneous, and can override guiding cues in-
tegrated into the scaffold, therefore highlighting the
need for physiologically relevant TEHV prototyping
(Figure 1). It is currently possible to evaluate TEHV
function (before implantation) through the use of
“pulse-duplicating” bioreactors recapitulating native
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hemodynamics. In developing the next generation of
TEHV prototyping methods, the remodeling process
should be accounted for. Methods for integrating
hemodynamic valve function testing with “live”
tissue generation would facilitate real-time studies of
valve remodeling, illuminating the interactions
among valve cell phenotype, tissue formation,
and valvular function over spatial and temporal
scales. Circulating biological factors responsible for
remodeling, such as macrophages, or well-recognized
inflammatory cytokines like transforming growth
factor-b, can also be incorporated.

Importantly, a patient’s biological response to the
TEHV may be influenced by elements such as age or
comorbidities. Subcutaneous scaffold implantation
may be a proxy for host immune response, recellu-
larization, and scaffold degradation, thereby inform-
ing TEHV design.45 However, such an invasive test
would be impractical to administer in humans as a
surrogate for individual patients’ biological re-
sponses. Moving forward, tissues-on-a-chip may
present a noninvasive means of predicting the rate
and quality of neo-tissue formation in a patient-
specific fashion by harnessing stem cell-derived
VICs and VECs toward generating individualized
models.

COMPUTATIONAL MODELING. Computational models
are particularly promising in advancing TEHV design,
enabling quantitative evaluations of how design
parameters (such as valve geometry and fiber archi-
tecture46), and environmental elements (such as cell-
mediated remodeling36) influence neo-tissue forma-
tion. In achieving clinical translation of TEHVs,
computational models will become increasingly
valuable in predicting how environmental stimuli
interface with scaffold design, especially with regard
to directing tissue regeneration at the cellular level
(as reviewed by Loerakker et al47). Design testing
should consider the effects of ECM synthesis—
importantly, the spatial and temporal dynamics of
collagen deposition,36 which have implications for
tissue anisotropy, compaction, and load-bearing.
Taken together, integrating computational tech-
niques into the TEHV development pipeline repre-
sents a unique means of studying the host/scaffold
interface, while facilitating high-throughput isolation
of design parameters most suited towards valve
regeneration (Figure 2).10

IN SITU EVALUATIONS

Although in vitro and computational evaluations
provide a platform for designing and prototyping
TEHVs, the host environment plays a critical role in
directing the outcome of scaffold remodeling.48

Achieving long-term physiological valve tissue gen-
eration thus requires rigorously evaluating TEHVs in
situ and applying outcomes toward further refining
scaffold design.

PRECLINICAL STUDIES. To date, the majority of
preclinical TEHV evaluations have been carried out in
porcine and ovine models,7,8,10,12 which have proven
pivotal in assessing valve validity (safety and effi-
cacy). A prime example has been the Emmert and
Hoerstrup team’s preclinical evaluations of a “sec-
ond-generation” TEHV, featuring a physiological
leaflet geometry with increased belly curvature and
a coaptation area intended to anticipate in situ
leaflet shortening. In ovine models, the second-
generation designs demonstrated reductions in
leaflet thickening and preserved valve function for 1
year, as well as reduced a-smooth muscle actin
expression and increased endothelization of the
hinge region.10,25 These results were indicative of a
relatively proregenerative biological response, and
were observed as early as 8-weeks follow-up, possibly
indicating that early host responses strongly influ-
ence long-term outcomes.25

Preclinical evaluations also inform scaffold design
(Figure 2). For example, the Tranquillo group’s pre-
clinical evaluations of a tubular heart valve in a
growing lamb model led to a revised design capable of
overcoming the original valve’s primary failure
modes. This updated design improved commissure
stability by shifting load to a tube surrounding the
valve, and successfully functioned as a pulmonary
valve in a growing lamb model for up to 52 weeks,
outperforming clinically used bioprosthetic valves.12

Taken together, these examples demonstrate pre-
clinical studies’ essential role in providing functional
readouts characterizing the TEHV-host interaction
over time. Moving forward, preclinical studies should
function as a testing-ground for the development of
surrogate markers that enable live evaluation of host
response to the scaffold (ie, imaging or biomarkers),
which, in combination with current clinical readouts,
would be capable of assessing and predicting the
quality of valve tissue generation.49 Some examples
may include serum inflammatory markers, cytokine
and antibody generation, and advanced imaging (ie,
strain echocardiography, 4-dimensional cardiac
magnetic resonance, positron emission tomography
for visualization of cell metabolism, or integration of
specialized contrast agents).

CLINICAL STUDIES. To date, the Xeltis valve is the
only in situ TEHV to undergo in-human trials. The
first trial illuminated a primary failure mode of



FIGURE 2 Development and Prototyping of TEHVs
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pulmonary valve regurgitation in the setting of leaflet
prolapse, prompting a re-evaluation of leaflet design.
Informed by computational techniques, the valve’s
fatigue resistance was enhanced by introducing a
homogenous leaflet thickness. The new design was
validated in vitro, leading to the second clinical trial,
which demonstrated largely retained valvular func-
tion over the course of 1 year.9 Significant improve-
ments in outcomes between the first and second
clinical studies highlights how dynamic valve devel-
opment can work synergistically with ongoing func-
tional tests to improve clinical outcomes.9

CLINICAL TRANSLATION

To translate research findings to the clinical setting, it
is essential to consider the quality control objectives,
regulatory hurdles, and logistic challenges inherent
to TEHV commercialization.

REGULATORY CONCERNS. A central objective is
establishing rigorous quality control metrics for TEHV
fabrication. Of particular importance is creating
quality control standards for reducing interbatch
variability, especially for in situ decellularized
TEHVs, where cell behavior and culture conditions
influence the final product. Good manufacturing
practices50,51 provide a foundation for these re-
quirements, which should include standardized
fabrication protocols and equipment (ie, regulated
tissue culture, bioreactors, and polymer synthesis).
Following fabrication, functional metrics should be
assessed (response to fatigue testing, hemodynamic
testing, and biocompatibility), in tandem with char-
acterization of the scaffold’s architecture (anisotropy,
porosity, fiber diameter) and composition.

At present, the lack of centralized regulatory re-
quirements for the clinical approval of TEHVs re-
mains a primary challenge to commercialization.50

Exacerbating this challenge, the approval pipeline
for TEHVs differs between countries.50 International
Organization for Standardization guidelines provide
a foundation for synchronizing regulations, but
must be adapted to account for complexities
inherent to tissue engineering (most prominently,
dynamic remodeling within a patient).50 Before
valve implantation, these adaptations would likely
involve evaluating the patient’s regenerative ca-
pacity, projected immune response, and candidacy
for alternative interventions. Following implanta-
tion, requirements may take the form of standard-
ized follow-up protocols, with clinically informed
functional benchmarks and predetermined in-
terventions if a valve fails to meet these.38,50
Clinical studies are essential in continuously
refining these requirements. Trial design should be
tailored to specific TEHVs, both in terms of popu-
lation selection (ie, faster-degrading scaffolds for
the pediatric population) and readouts (ie, focus on
antigenicity for decellularized scaffolds).

LOGISTIC IMPLEMENTATION. Well-defined strate-
gies for the logistic integration of TEHVs will greatly
improve efforts toward clinical translation. Here,
clinical use of valvular xenografts and homografts
provides a model for the preparation, storage, and
distribution of TEHVs. This would entail dedicated
fabrication and tissue culture centers, with standard
operating procedures for TEHV processing, steriliza-
tion, and storage. To enhance clinical availability,
valves should be stored “off-the-shelf” and accessible
on-site for selection at the time of intervention.

Polymer-based valves (such as Xeltis) are excep-
tionally well-poised for clinical translation given their
relatively rapid manufacturing, off-the-shelf avail-
ability, and ease of storage. Polymeric scaffolds lend
themselves to mass customization; valves can be
designed in a wide range of sizes and fabricated from
polymers with degradation profiles intended to meet
patient-specific regenerative capacity. Unlike
bioprosthetic grafts or decellularized TEHVs, their
acellular nature renders them free from concerns of
antigenicity.

Although polymeric TEHVs have demonstrated
functionality in ovine models up to 24 months,52

considerable questions remain regarding heteroge-
neity in neo-tissue formation within and between
patients as the original scaffold degrades, especially
given differences in age, genetics, and comorbid-
ities.38,49,53 To meet this challenge, the spatial and
temporal kinetics of scaffold degradation can be
visually monitored in situ by integrating specialized
contrast agents54 or nanoparticles55 into the
TEHV polymer. This information would contribute
toward developing clinical predictors of remodeling
and regenerative capacity, a possible prerequisite to
the widespread clinical translation of polymeric
TEHVs.

Decellularized TEHVs have been anticipated to
decrease remodeling heterogeneity.56 These scaffolds
have the advantage of acting as a homogeneous
“starter-matrix” for remodeling, thereby reducing the
risk of a prolonged inflammatory response to residual
polymer.56 However, there are logistical challenges to
their clinical translation. Tissues are cultured for 1 to
2 months, highlighting the significant time, re-
sources, and labor required to engineer decellularized
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valves. This limits scalability, especially when bio-
reactors are necessary for tissue maturation. Fabri-
cation of decellularized TEHVs requires rigorously
standardizing tissue-culture protocols—including cell
sources and culture reagents. This reduces opportu-
nities to customize scaffold mechanical properties or
degradation kinetics to accommodate specific pa-
tients. Nevertheless, unintended variability remains a
possibility caused by unpredictable cellular behavior
during in vitro tissue engineering. Moreover, immu-
nogenicity (from in vitro– or xenograft-derived tis-
sue) may unexpectedly hamper healthy neo-tissue
generation.

Taken together, in evaluating approaches for TEHV
development, primary success criteria can be envi-
sioned as the following: 1) development of a scaffold
capable of instructing predictable and reproducible
tissue generation; 2) minimization of requirements
for patient-specific scaffold customization; and
3) practicality of clinical implementation (elements
such as cost, storage, ease-of-use, and scalability).

Following clinical translation, TEHVs would have
widespread utility—especially for patients with
congenital heart disease, where freedom from valve
replacement failure can be only months.57 Critical risk
factors for valve graft failure are younger age at im-
plantation and smaller graft size, highlighting the
urgent need to develop a replacement capable of
remodeling and growing. Preclinically, TEHVs have
proven capable of this, improving freedom from valve
dysfunction.12 Although it remains to be seen
whether these results are recapitulated long-term in
humans, the Xeltis trials underscore TEHVs’ feasi-
bility and safety and, importantly, their capacity for
integration into the clinical sphere.
CONCLUSIONS

TEHVs have the potential to dramatically improve
treatments for valve disease, acting as life-long valve
replacements that can grow and remodel. Designing a
TEHV capable of achieving long-term functionality in
situ requires a design process actively guided by
valve pathophysiology, coupled with rigorous proto-
typing. The form and function of the native valve
inform TEHV design and establish benchmarks for
assessing valvular function. Unifying each phase of
this design framework is the primary goal of creating
TEHVs that respond to in situ stimuli to ultimately
instruct the formation of an autologous valve
replacement.
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